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Abstract 
 
The ability to predict the behavior of a random process immediately following a level 
crossing can provide critical engineering design information.  In this study the effects of 
non-Gaussian, non-stationary input on the response of linear and nonlinear structures 
subject to earthquake excitation is investigated using a Slepian process model.  The 
strong ground motion portion of a suite of earthquake records, which is essentially 
Gaussian, was extracted from the total ground motion records in order to investigate the 
effect of non-Gaussian input on the response predictions. In this study the attention was 
directed at the prediction of extremes for linear, and non-linear hysteretic oscillators.  
Predictions for the linear oscillators were found to be good, while predictions for the 
highly nonlinear oscillators were poorer until am approximate correction for the change 
in equilibrium position experienced during the motion response behavior was applied.  
Based upon the experience gained from these examples, a three-member frame, whose 
beam-to-column connections were modeled as tri-linear hysteretic was investigated.  The 
structural reliability, which is a basic measure of the safety reserve in a system, was 
bounded using the Slepian prediction of the frames response.  
 
Non-Technical Summary 
 
Ground motions that appear to be of approximately the same intensity level often cause 
very different levels of damage in engineered structures, even when their designs are very 
similar.  This is because there are certain characteristics within each ground motion that 
cause more damage to certain types of structures.  This study used a statistical approach 
that was originally developed for use in audio signal processing to examine the damaging 
effect of a suite of ground motion records using structural models of varying complexity.  
The most complex model was a reinforced concrete frame and the safety of the frame 
during earthquake excitation was readily determined by applying the Slepian procedure. 
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1. Introduction  
 

In order to understand ground motion and begin to link it with structural damage, a 
comprehensive description of the ground motion is needed. Ground motion is a random 
process, which can, if assumed stationary, be generated as the sum of infinitesimal sine 
waves with each having its own amplitude and phase. However, ground motion is a 
complex nonstationary phenomena that generally requires addressing in the time domain.  
The extremes of a random process play an important role in most engineering design 
problems including those involving the estimation of structural damage accumulation. 
One very important problem in earthquake engineering, which to a large extent remains 
unsolved, has been the prediction of the behavior of a random process after it crosses 
some predefined level. The importance of understanding this problem can not be 
understated since it would provide a direct link to modeling the extremes and eventually 
damage prediction. One predictive model, developed in the early 1960’s (Kac and 
Slepian 1959, Slepian 1961, 1962), has had success in predicting the extreme behavior of 
random Gaussian processes, but has had only moderate application to earthquake 
engineering problems and virtually no application to nonstationary random processes. 
 
 
1.1 The Slepian Model 
 
A Slepian process model, introduced by Bell Laboratory’s physicist David Slepian (1961, 
1962), is used to describe the conditional behavior of a stochastic process following 
events defined by level or threshold crossings. There are two types of Slepian models. 
The Type I model is used to describe the behavior of a process immediately following a 
level crossing, and the Type II model is used to describe a process immediately following 
an extreme event. The work presented herein focuses on the Type I model. This type of 
model describes the extreme behavior of a process in terms of the covariance of the 
underlying process and the statistical distribution of the first derivative at level crossings. 
It is conditioned on the threshold level with the assumption that the derivatives at the 
point of upward level crossing follows the Rayleigh distribution. One very powerful 
feature of this modeling process is that one can easily vary the crossing level to obtain 
new predictions without any additional computation. 
 
 
1.2 Quantifying Damage 
 
Earthquakes are a powerful force of nature and will continue to occur in densely 
populated urban areas all over the world. As seismologists understand more and more 
about earthquake mechanisms, earthquake engineers are beginning to understand how to 
optimize the conflicting design objectives of minimizing deflections while maximizing 
energy dissipation. The present study seeks to work toward finding a new way to identify 
which ground motions are more damaging than others.  Engineers and scientists tend to 
quantify almost everything in order to give a process some type of order. This is often 
done in terms of a parameter or index that relate the energy or some other quantity of the 
ground motion to the observed structural damage occurrence. In addition, it is often 
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advantageous for engineers to characterize the ground motion statistically and attempt to 
relate these quantities to structural damage. 
 
Overall structural damage to a building is of primary importance since it is directly 
related to economic losses and loss of life. Scale criteria have been used to classify 
damage grades based on on-site inspection information (Cabanas et al. 1997). Seismic 
damage indexes can quantitatively describe damage to a structure or its components, and 
provide an important link between analysis and acceptance criteria. Damage indexes for 
seismically detailed structural elements are generally based on element forces, 
irrecoverable deformations, dissipated energy or some combination of these quantities. It 
is said that the majority of structural damage indexes are related to the irreversible 
damage done to structures in the post-yield range. An energy dissipation index was 
developed previously by Darwin and Nmai (1986) for beams under cyclic loading. There 
also exist damage models that are based on stiffness degradation under reversed cyclic 
loading (Banon et al. 1981; Roufaiel and Meyer 1987). Mehanny and Deierlein (2001) 
proposed a new cumulative ductility damage index for structural elements that are 
commonly used in steel/concrete composite construction. Park and Ang (1985) expressed 
seismic structural damage as a linear combination of the damage caused by excessive 
deformation and that contributed by the repeated cyclic loading effect that occurs during 
ground shaking. They represented this in terms of a damage index, D, which can be 
calibrated to dynamic and monotonic test results. As a result of a robust regression 
analysis using years of experimental data from various research studies, their model is 
mechanistic for reinforced concrete structures. Mathematically, the Park-Ang damage 
index can be expressed as 

M

u y u

D dE
Q

δ ψ
δ δ

= + ∫                                                           (1) 

in which Mδ = maximum deformation under earthquake; uδ = ultimate deformation under 
monotonic loading; yQ = calculated yielding strength; dE  = incremental absorbed 
hysteric energy; ψ = model calibration parameter. This damage model was used as a 
measure of structural damage in the present study due to its acceptance as a credible 
measure in reinforced concrete structural engineering applications. 
 
 
2. Mathematical Formulation 
 
2.1 Derivation of the Type I Slepian Process Model 
 
The Slepian model can be derived several ways but here we follow and expand upon the 
derivation by Randrup-Thomsen and Ditlevsen (1997).    In the derivation we seek to 
linearly regress the random process ( )X t  on the vector ( ) ( ) ( )[ ]1 1 10 , 0 , 0X X X� ��  that can be 
more generally interpreted as a vector consisting of the specified crossing level, the 
derivative of the process at that crossing level, and the second derivative of that process 
at a critical point.   This derivation then involves matrices that can be treated analytically 
using basic matrix methods; however a few preliminaries will prove helpful in 
understanding this approach.  
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Consider the general matrix A  whose inverse, 1A− , one would like to obtain.  To 
accomplish this several intermediate matrix manipulations are required.  Here we focus 
the discussion on the solution for the case when A  is a 3x3 matrix.  If follows then that 
 

11 12 13

21 22 23

31 32 33

a a a
A a a a

a a a

 
 =  
  

  (2) 

 
1

det
adj A adj AA

A A
− ≡ =   (3) 

 
Thus the determinant and the adjoint of the matrix must be obtained.  The determinant of 
the matrix A  can be expressed as 
 

1
det

n

rs rs
r

A A a A
=

≡ = ∑   (4) 

 
( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1 3
11 11 12 12 13 13

22 23 21 23 21 22
11 12 13

32 33 31 33 31 32

11 22 33 23 32 12 21 33 23 31 13 21 32 22 31

1 1 1A a A a A a A

a a a a a a
a a a

a a a a a a

a a a a a a a a a a a a a a a

+ + += − + − + −

= − +

= − − − + −

 (5) 

 
The adjoint of the matrix, ( )-1 eliminating the  row and  column  i jadj A ith jth+≡    and it 

follows then that for the matrix A  one obtains  
 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1 322 23 12 13 12 13

32 33 32 33 22 23

2 1 2 2 2 321 23 11 13 11 13

31 33 31 33 21 23

3 1 3 2 3 321 22 11 12 11 12

31 32 31 32 21 22

1 1 1

1 1 1

1 1 1

a a a a a a
a a a a a a

a a a a a a
adj A

a a a a a a

a a a a a a
a a a a a a

+ + +

+ + +

+ + +

 
− − − 

 
 
 = − − −
 
 
 − − −  

 (6) 

The linear regression was expressed in terms of the conditional covariance by Randrup-
Thomsen and Ditlevsen (1997) as 
 

1
i iE X Y Cov X Y Cov Y Y Y

−
′ ′  =            (7) 

 
where, for compactness in the derivation to follow the following definitions have been 
used 
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( )i iX X τ=   (8) 

 
( ) ( ) ( )1 1 1 1 1 1, , 0 , 0 , 0Y X X X X X X   = =   

� �� � ��   (9) 
 

In order to evaluate equation (8) the process is divided into as sequence of 
evaluation steps.  Beginning with the first term on the right-hand side of equation (8) one 
obtains the following  
 

( ) ( )
1 1 1

1 1 1

1 1 1

, ( ), , ,

i i i

i i

X X X X X X

i i i

Cov X Y Cov X X X X

R R R

R R R

τ  =  

 =  
 = − 

� ��

� ��

� ��

  (10) 

 
Next we obtain the expression for the covariance of the second term on the right-

hand side of equation (8) in terms of the spectral moments of the random process.  This 
evaluation yields the following matrix 
 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

0 2

20

2 4

0 0 0 0
0 0 0 0 0

00 0 0

X X X X X X

X X X X X X

X X X X X X

R R R

Cov Y Y R R R

R R R
τ

λ λ
λ

λ λ
=

 − −    ′  = − − =       −   

� ��

� � � � ��

�� �� � �� ��

 (11) 

 
From equation (3) it follows that the evaluation of the inverse of this covariance 

function is obtained in two steps, beginning with the evaluation of the determinant 
  

0 2

20

2 4

0
0 0

0
Cov Y Y

τ

λ λ
λ

λ λ
=

− 
 ′  =   
 − 

  (12) 

 
It follows then that 
 

( ) ( ) ( )( )( ) 3
0 2 4 2 2 2 0 2 4 20

0 0 0Cov Y Y
τ

λ λ λ λ λ λ λ λ λ λ
=

′  = − − + − − − = −   (13) 

 
and, 

( )2
2 4 0 2 40

1 1
/Cov Y Y

τ
λ λ λ λ λ

=

=
−′  

  (14) 

 
The evaluation of the adjoint is straight forward and yields 
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2
2 4 2

2
0 4 20

2
2 0 2

0
0 0

0
adj Cov Y Y

τ

λ λ λ
λ λ λ

λ λ λ
=

 
 ′  = −   
  

 (15) 

 
The resulting expression for the inverse of the covariance function when assembled is  
 

2

4

1 0 2
2

0 2 4 2 4

02

4 4

1 0

1 0 0
/

0

Cov Y Y

λ
λ

λ λ
λ λ λ λ λ

λλ
λ λ

−

 
 
 
 

′  = −   −  
 
 
  

 (16) 

 
At this point it is now possible to evaluate equation (7), specifically 
 

1

2

4
1

0 2
1 1 1 12

0 2 4 2 4
1

02

4 4

1 0

1 0 0
/

0

i i

i i i

E X Y Cov X Y Cov Y Y Y

X
R R R X

X

λ
λ

λ λ
λ λ λ λ λ

λλ
λ λ

−
′ ′  =         

 
 
   
    = − −    −      
 
  

� �� �
��

 (17) 

 
For the situation where 4λ → ∞ , equation (17) can be simplified 
 

1

1 1 1 12
0 2 4

1

1 0 0
1 0 0 0

/
0 0 0

i i i i

X
E X Y R R R X

X
λ λ λ

   
      = −       −
      

� �� �
��

 (18) 

 
Carrying out the matrix multiplication, one obtains an initial form for the expected value 
of the Type I Slepian model 
 

1 1
1 1 1 1 1

0 2

( ) , , ( ) ( )i i i
X XE X X X X R Rτ τ τ
λ λ

  = − 
�� �� �  (19) 

 
At this point the notation can be modified to that used in earlier studies, where the 
expected values of the level crossing and the slope at level crossing can be expressed as  
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[ ]
0 2

( ) , ( ) ( )xx xx

E zuE X u z R Rτ τ τ
λ λ

  = −  �   (20) 

 
For a Gaussian process the derivative process of the slope at crossing in known to 

be a Rayleigh distributed process of the form (Evans, Hastings and Peacock 2000) 
 

( )
21

2
2

x
bzp z e

b

 −  
 =   (21) 

 
where, the mode b of the derivative process and the expected value of the process is 
 

[ ]
2

E z b π
=   (22) 

 
and, the mode can be approximated using the expression 
 

2

1

1
2

N

i
i

b z
N =

∑∼   (23) 

 
Finally, one obtains the Type I Slepian model used in this research study  
 

0 2

( ) , ( ) ( )
2xx xx

u bE X u z R Rπτ τ τ
λ λ

  = −  �   (24) 

 
The model provides an estimate of the expected behavior of the process above a specified 
crossing level.  It can be observed that once the covariance functions, the mode and the 
spectral moments of the process have been established, the model can also be used to 
predict behavior above other crossing level with a minimum of additional computation. 
 
Using this same basic formulation one can obtain the Type II Slepian model that deals 
with the estimation of the process after a maximum.  Beginning with an appropriate form 
of equation (17) one can write 
 

2

4
1

0 2
1 12

0 2 4 2 4
1

02

4 4

1 0

1 0 0 0 0
/

0

i i i

X
E X Y R R

X

λ
λ

λ λ
λ λ λ λ λ

λλ
λ λ

 
 
   
      = −      −      
 
  

��
��

 (25) 

 
Performing the matrix multiplications yields 
 



 9

( ) ( ) ( ) ( ) ( )02 2
1 1 1 12

0 2 4 4 4 4

1,
/ xx xx xx xxE X X X R R X R R Xλλ λτ τ τ τ τ

λ λ λ λ λ λ
      = + + +      −     

�� �� �� �� (26) 

 
This equation can be simplified by introducing other equations relating the spectral 
moments to other spectral moment equations, these include spectral bandwidth, the mean 
min-Max rate, and the mean zero crossing period.  For example consider using the 
equation for spectral bandwidth that Cartwright and Longuet-Higgins (1956) defined as 
 

2
2 2

0 4

1 λε
λ λ

= −   (27) 

 
This parameter approaches unity as the spectrum approaches white noise.  Although the 
evaluation of 0 2andλ λ , the evaluation fourth spectral moment can be problematic.  
Introducing equation (27) into equation (26) and making some additional substitutions 
one obtains one form of the Type II Slepian model 
 

( ) ( ) ( ) [ ] ( ) ( )
2 2

0 0
2 2 2

0 2 2 2

1 1 1, xx xx xx xx

E auE X u a R R R Rλ λε ετ τ τ τ τ
λ ε ε λ λ ε λ

    − −
  = + + +           

�� �� (28) 

 
The expected value of the accelerations at a positive maximum, [ ]E a , can be assumed to 
be Rayleigh distributed and given by a form and evaluation procedure similar to that of 
equation (21).   The Type II model was presented for completeness and other useful 
forms of equation (28) can be developed.  However, since this model is not used in this 
study it is sufficient to stop at this point. 
 
 
2.2 Strong Ground Motion Duration 
 
The ground acceleration associated with an earthquake is a non-stationary, non-Gaussian 
process, as will be shown in the numerical examples; this is not the case for the strong 
motion portion of the record as shown in Figure 1.  Figure 1 presents a normal PDF 
superimposed over a normalized histogram for (1) the entire record, and (2) the strong 
motion portion of the record.  Husid et al. (1969) defined the strong motion duration as 
the time interval required to accumulate a prescribed fraction of the total energy, e.g., 95 
percent.  Later, Page et al. (1975) defined strong motion duration as the time interval 
between the first and last peaks equal to or greater than a given level, usually, 0.05g, on 
an accelerogram.  Since there appears to be no universally accepted definition, the strong 
motion duration definition proposed by Vanmarcke and Lai (1980) will be used.  They 
defined the strong ground motion portion of a record, 0S , as 
 

 
( ) ( )2

0 0 0 max 0 0
0 2

0 max 0 0

2 ln 2     S 1.36

2                             S 1.36

S T I a T
S

I a T

 ≥  = 
≤

        (29) 
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where, 0T  is the predominant period of the earthquake motion, amax is the absolute 
maximum acceleration in the record, and 0I  is the Arias intensity, which can be 
expressed as 
 

 
0

2
0

0

( )
t

I a t dt= ∫  (30) 

 
where, ( )a t  is the acceleration of the ground in the same units as amax.  The upper limit of 
the integral, 0t  in equation (30) represents the duration of the entire acceleration record.  
In order to determine the location of the strong ground motion portion, a window having 
a width equal to S0 was sequentially moved through the entire record.  The strong ground 
motion portion was selected at the location where the windowed selection of the time 
series had a maximum variance. 
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FIG. 1: Comparison of the Gaussianity for the strong motion duration of an 
                     earthquake record with the entire record. 
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3. Illustrative Examples 
 
In order to demonstrate application of the methodology several illustrative examples are 
presented.  These include the investigation of the effect of non-Gaussianity on the Slepian 
prediction, the ability of the approach to predict the response of linear and nonlinear 
oscillators, a predictive damage model for a reinforced concrete (RC) three-member 
frame, and the drift-based reliability of the same three member RC frame.  The structural 
reliability indices of the frame were computed based on transient drift predicted by the 
Slepian model as well as from the actual data. 
 
 
3.1 Strong Ground Motion 
 
In order to determine if only the strong motion portion or the entire ground acceleration 
record should be used, the Slepian model prediction for each was calculated. Figure 2 
presents Slepian predictions based upon the total record and the strong motion portion. 
For each prediction, the numerical covariance and its derivatives from the time series 
were used. Inspection of Figure 2 leads to the conclusion that the Slepian prediction using 
only the strong motion portion is only slightly better than the prediction using the entire 
record. There may be several reasons for this: (1) For the lower level crossings, both the 
strong motion portion and the entire record have adequate data to obtain the mean values, 
so there may not be much difference between these predictions; (2) The higher level 
crossings contain much of the same data for calculation of the mean values, since the 
strong motion portion contains almost all the higher level crossing data. Figure 3 and 
Figure 4 present the covariance and its derivative for the strong motion portion and the 
total record. Note that the covariance function is normalized by the variance of the time 
series, and its derivatives are normalized by the standard deviation of the derivatives of 
the time series. Inspection of the figures leads to the conclusion that the normalized 
covariance of the strong motion portion is almost the same as that of the total record and 
there does exist some difference between the normalized derivatives of the covariance for 
the strong motion portion versus the total record. However, it is not significant. Recall 
that the accuracy of the Slepian prediction relies heavily on the covariance function. The 
fact that the covariance function for the strong motion portion and the entire record are 
almost the same provides the explanation for Figure 2. 
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FIG. 2 Slepian Prediction for Total Record versus the Strong Motion Portion 
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FIG. 3 Normalized Covariance Function 
 
 

3.2 Linear and Non-Linear Oscillator Response 
 
The response prediction of several different linear oscillators was investigated assuming 
5% critical damping in each case and the only the natural period of the models were 
varied.  The Slepian predictions for two different linear oscillators excited by the six 
different earthquakes identified in Table 1 are shown in Figure 5.  It is evident that   the 
accuracy of the predictions varies depending on the particular earthquake used to excite 
the oscillator, and that the accuracy degenerates for the higher level crossings.  This is the 
result of the number of points in each event decreasing as the specified level crossing is 
increased.  The Slepian model predictions of the mean response behavior appear to fit 
reasonably well with the mean response obtained directly using the data.  For all 
combinations of oscillator and earthquake the prediction of the expected value above 
zero-crossing was good.    
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FIG. 4 Normalized Derivative of the Covariance Function 

 
 
 
 
 

TABLE 1: Details of the earthquakes used in this study 
 
Ground Accelogram and Oscillator Examples 
Earthquake Name Year Magnitude Total Duration of 

Accelogram 
(sec.) 

Strong Motion Duration 
from equation (4) 
(sec.) 

Chi Chi, Taiwan 1999 7.3 59.0 9.57 
El Centro, USA 1940 7.1 53.4 12.62 
Michioacan, Mexico 1985 8.1 156.3 13.20 
Duzce, Turkey 1999 7.4 86.2 11.22 
Llolleo, Chile 1985 8.0 99.9 44.80 
Kobe, Japan 1995 7.2 78.0 16.36 
 
Three-story RC Frame Example 
North Palm Springs 1986 6.0 59.98 4.92 
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FIG 5: Slepian model prediction of the expected value of the response above level 
crossings for linear oscillators having periods of 0.2 and 1.0 seconds (from top to 
bottom) subjected to the six earthquake records presented in Table 1.  Dashed line = 
Data, Solid line = Slepian model prediction. 
 
 
Recall that, in order to improve the prediction, the Slepian model relies on the derivatives 
of the time series at the level up-crossing. The expected value form of the Slepian method 
is based upon the assumption that the derivatives of the time series follow a Rayleigh 
distribution, which has been demonstrated to be correct for a Gaussian process. For a 
non-Gaussian time series the derivatives at a level crossing have been shown to follow a 
Weibull distribution. To confirm this for a single record, Figure 6 presents the survivor 
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functions of the derivatives at zero up-crossing for the El Centro ground acceleration 
record and the survivor functions for the theoretical Weibull and Rayleigh distribution. It 
can be seen that the derivatives at zero-crossing follow a Weibull distribution with shape 
parameter κ=1.13, which is almost an exponential distribution. Recall that the Rayleigh 
distribution is a special case of the Weibull distribution with shape parameter κ=2.0. In 
order to show this a little more clearly, Figure 7 presents the shape parameter for forty 
(40) earthquake chosen records from around the world, whose details are presented in 
Table 2. One can see that they vary significantly and all have κ values significantly less 
than 2.0.  
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FIG. 6 Survivor Functions for Slopes at Zero Up-crossing for the El Centro 
Ground Motion  
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FIG. 7 Weibull Shape Parameter κ for Slopes at Zero Up-crossing for Forty 
Earthquakes 
 



 16

TABLE 2: Earthquake Details for Forty Records Used in this Study 
 

 
  File Earthquake Name DT Total Strong Damage Kurtosis Kurtosis 
  Name     Duration Duration Index strong Total 
1 LA01 Imperial Valley, El Centro, 1940 0.020 53.380 14.000 0.592 3.376 7.485
2 LA07 Landers, Barstow, 1992 0.020 79.900 2.980 0.532 3.149 17.411
3 LA11 Loma Prieta, Gilroy, 1989 0.020 39.940 1.620 0.286 2.427 17.636
4 LA13 Northridge, Newhall, 1994 0.020 59.980 4.940 1.080 3.020 28.494
5 LA19 North Palm Springs, 1986 0.020 59.980 4.920 0.267 3.940 30.789
6 LA21 Kobe, 1995 0.020 59.980 1.560 0.483 2.141 30.097
7 LA29 Tabas, 1974 0.020 49.900 8.540 0.326 3.093 11.394
8 LA31 Elysian Park (sim) 0.010 29.990 9.260 0.636 3.688 11.794
9 LA37 Palos Verdes (sim) 0.020 59.980 1.520 1.044 2.059 24.740
10 SE01 Long Beach, Vernon CMD Bldg 0.010 39.050 1.860 0.821 1.958 13.162
11 SE03 Morgan Hill, Gilroy, 1984 0.020 59.980 12.540 0.663 3.708 12.153
12 SE05 West, Wahington, Olympia, 1949 0.020 79.900 13.040 0.558 3.288 11.651
13 SE11 Puget Sound, Wa., Olympia, 1949 0.020 81.820 4.840 0.467 2.833 19.577
14 SE15 Eastern Wa., Tacoma County, 1949 0.020 59.980 13.100 0.462 3.623 7.712
15 SE17 Liolleo, Chile 1985 0.025 99.875 44.800 1.231 3.660 7.591
16 SE19 Vinadel Mar, Chile, 1985 0.025 99.875 33.100 1.214 2.929 5.904
17 SE21 Mendocino, 1992 0.020 59.980 3.340 0.596 3.144 40.629
18 SE23 Erzincan 1992 0.005 20.755 3.865 0.950 3.031 11.764
19 SE27 Seatle 1965 0.020 81.820 4.840 0.467 2.833 19.576
20 SE29 Valpariso 1985 0.025 99.875 44.800 1.231 3.661 7.591
21 SE33 Deep Interplate (sim) 0.020 79.900 10.080 0.255 3.318 10.329
22 SE35 Miyagi-oki 1978 0.020 79.900 10.500 0.646 2.905 16.431
23 SE37 Shallow Interplate (sim) 0.020 79.900 15.460 0.516 3.399 12.797
24 BO01 Hanging Wall, (sim) 0.010 29.990 4.920 0.401 4.837 27.532
25 BO03 Foot Wall (sim) 0.010 29.990 1.420 0.308 2.523 30.045
26 BO05 New Hampshire 1982 0.005 19.225 0.270 0.060 2.446 40.454
27 BO07 Nahanni 1985 0.005 20.335 1.505 0.197 3.600 12.598
28 BO13 Saguenay, 1988 0.005 17.725 14.905 0.310 4.751 5.206
29 LA41 Coyote Lake 1979 0.010 26.810 1.090 0.319 1.591 24.721
30 LA45 Kern 1952 0.020 78.580 15.460 0.822 2.973 7.482
31 LA49 Morgan 1984 0.020 59.980 12.540 0.663 3.708 12.153
32 LA51 Parkfield 1966 0.020 43.900 7.860 0.321 6.667 33.628
33 LA57 San Fernando 1971 0.020 79.420 7.520 0.296 3.363 26.238
34 LA59 Whittier 1987 0.020 39.940 2.160 0.672 2.179 25.235
35 Chichi Chichi 0.005 58.995 9.565 1.403 3.218 7.111
36 Duzce Duzce 0.005 86.170 11.220 1.238 3.306 8.874
37 Michiocan Michiocan 0.030 156.300 13.200 1.533 3.018 10.914
38 LA23 Loma Prieta 1989 0.010 24.950 6.560 0.653 2.257 7.419
39 SE25 Olympia 1949 0.020 79.900 13.040 0.558 3.288 11.651
40 BO27 Nahanni Station1, 1985 0.005 20.335 1.505 0.197 3.600 12.598
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Because slopes at level up-crossings play an important role in the Slepian methodology, it 
is logical to investigate the relationship between the Weibull shape parameter for slopes 
at zero-crossing and the resulting Park-Ang damage index. Figure 8 presents the Weibull 
shape parameter κ for slopes at the zero up-crossing for the ground acceleration record 
versus the Park-Ang structural damage index, D, calculated using an arbitrary elasto-
plastic oscillator.  
 
The linear regression is also presented in the same figure. Inspection of Figure 8 tells us 
that the Weibull parameter κ increases slightly for larger damage indices although there 
is clearly significant scatter. The dashed line in Figure 8 shows the value of κ that 
corresponds to a Park-Ang damage index of 1.0, at least in a least squared sense. Figure 9 
presents that point (κ=0.79) as the left most point at an abscissa value of zero, since it is 
for zero-crossing. Repeating the procedure for level crossings of 0.1, 0.2, 0.3, and 0.4 one 
can see that as the level crossing increases the shape parameter for the slopes of the 
ground acceleration record at that level crossing tends to increase. Note that the dashed 
lines in Figure 9 represent +1 and -1 standard deviation for the predicted value based on 
the linear regression (Neter, et. al, 1996). The trend is clear since they increase also as the 
level crossing increases. This observation may allow prediction of expected damage 
levels because each of the points in Figure 9 corresponds to D=1.0.    
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FIG. 8 Weibull Shape Parameter κ for Slopes at Zero Up-crossing Versus 
Damage Index for Forty Earthquakes 
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FIG. 9 Weibull Shape Parameter κ at Different Level Crossings 
 
 
3.3 Three-Member Reinforced Concrete Frame 
 
A three-member RC frame was detailed using typical code procedures. A software 
package available through the multi-disciplinary center for Earthquake Engineering, 
IDARC (Inelastic Damage Analysis of Reinforced Concrete) was used to estimate the 
response of the structure to ground motion excitation. Figure 10 presents a comparison 
between the expected value prediction at zero-crossing and at a higher level crossing  
(~ 61mm) for the 1986 North Palm Springs earthquake. The prediction is very good at the 
zero crossing immediately following, i.e. 0.4 sec, but there is some discrepancy later. The 
difference between the simulated data and the Slepian prediction for the higher level 
crossing is approximately 13.5%. This is expected since there are only a handful of data 
points available at this higher level. (see “drift from IDARC model” in upper right corner 
of Figure 10). Now, consider the structural reliability problem in engineering which can 
be solved using a first order approximation known as the FORM.  
 
The calculation of the reliability index can be accomplished by considering the following 
limit state function 
 G C D= −  (31) 
 
where, G is the limit state surface, C is the structural capacity, and D is the seismic 
demand on the structure.  The structure is considered safe for all non-negative values of 
G, and fails for negative values of G.  The reliability index, β ,  is estimated from the first 
order reliability method (FORM) using the following expression 
 
 ( )1 1 fpβ −= Φ −  (32) 
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where, 1−Φ  is the inverse of the standard normal distribution function and , fp , is the 
failure probability.  The capacity, C, in Equation (31) was given in terms of inter-story 
drift by Dymiotis et al. (1999) as lognormal having a mean of 6.6% and a coefficient of 
variation (COV) of 31%.  This was based upon their analysis of 76 tests from around the 
world conducted between 1974 and 1998.  The seismic demand, D, in equation (31) can 
be determined from the Slepian model prediction or from data and its mean is established 
as from the expression 
 ( ){ }maxD uzE x tµ =     (33) 

 
where, Dµ  is the mean value of the seismic demand.  The COV of D is not explicitly 
known for earthquakes in general since it is typically dominated by the ground motion 
itself.  However, the statistical distribution is well described by a Weibull distribution 
(Niedzwecki et al. 2000; van de Lindt and Goh 2003) having a mean calculated from the 
expression in equation (33).  Figure 11 presents the variation in the reliability index as the 
COV of the seismic demand varies.  The mean of the seismic demand from both the 
Slepian model as well as the time series data is shown.  One can argue that the COV of 
the seismic demand is quite large, in general in excess of 100% (see for example 
Ellingwood et al. 1980).  Moreover, it is unlikely that a COV would exceed 200%.  By 
bounding utilizing these two COV values, this provides a bounded solution for the 
reliability index.  Taking the lower bound as conservative the Slepian prediction 
estimates β  = 1.51 compared to the actual value of β  = 1.43, a difference of 5.6%.  It 
was concluded that for moderately nonlinear RC structures, particularly frames, that the 
reliability indices computed using a Slepian predictive model are non-conservative by 
about 5 to 10%.  This was further investigated and verified by results not presented 
herein, and it was found that the results were similar regardless of the ground motion 
selected. 
 
 
4. Conclusions 
 
Based on the analyses conducted in this study it can be concluded that the Slepian Type I 
model does not provide a significantly better prediction when using only the strong 
ground motion portion of a record, even though that portion of the record is very nearly 
Gaussian.  The prediction was significantly better for the response of a linear oscillator 
compared to that of a nonlinear oscillator, elasto-plastic or bilinear.  This was caused by a 
shift in equilibrium position for the highly nonlinear oscillators and could be corrected by 
applying an approximate correction. 
 
Based on the analysis of the several simple nonlinear oscillators and their response to a 
suite of forty (40) earthquakes a trend between the level crossing and Weibull shape 
parameter for the response was observed. This observation, once generalized, could 
provide a statistical solution to the inverse problem, i.e. quantifying the distribution of the 
potential response for a structure near failure. Understanding that statistical distribution 
of the accelogram peaks play a role, may help to determine which ground motions cause 
damage to engineered structures. At this stage, it can be concluded that for basic 
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nonlinear oscillators the lower the Weibull shape parameter for the ground motion peaks 
the lower the probability of damage. However, this preliminary conclusion is based on 
analysis with only forty earthquakes, and a limited number of nonlinear oscillators.     
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FIG 10: Slepian prediction of drift above zero-crossing and an significantly higher 
level-crossing for the three-story reinforced concrete frame versus data generated 
using IDARC version 3.0. 
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FIG 11: Reliability index of the three-story frame using the results of the Slepian 
prediction as the mean of the frames capacity.  The reliability indices were 
calculated using the limit state function G = C – D and solved via the first order 
reliability method (FORM) approximation. 
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